

GRETSA UNIVERSITY - THIKA

UNIVERSITY EXAMINATIONS MAY - AUGUST 2018 SEMESTER

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: BSCS 105

COURSE TITLE: DIGITAL ELECTRONICS I

DATE: 7 AUGUST 2018

TIME: 3.00 PM - 6.00 PM

INSTRUCTIONS TO CANDIDATES

- 1. SECTION A IS **COMPULSORY.**
- 2. SECTION B: ANSWER ANY OTHER **THREE** QUESTIONS.
- 3. **<u>DO NOT</u>** WRITE ANYTHING ON THIS QUESTION PAPER AS IT WILL BE AN EXAM IRREGULARITY.
- 4. ALL ROUGH WORK SHOULD BE AT THE BACK OF YOUR ANSWER BOOKLET AND CROSSED OUT.

CAUTION: All exam rooms are under CCTV surveillance during the examination period.

SECTION A: COMPULSORY

Question One

a)	A logi	A logic function is expressed as $F(A, B, C) = \prod M(0, 2, 3, 7)$		
	i. Derive the standard POS expression of the function F.			
	ii. Draw the K-map for function F.			
	iii. Use the K-map and derive the simplified POS expression of the function F.			
			[4marks]	
	iv. He	nce or otherwise derive the simplified SOP expression of the same	function	
			[3marks	
a)	Compute the following			
	i.	+ 1111	[3marks]	
		1101		
	ii.	_10100	[2marks]	
		10011	[]	
b)	Repres	Represent the NAND Gate in a Truth table. Show clearly the output of the two		
	variabl	es.	[5marks]	
c)	What i	s the Binary equivalent of the decimal number 368?	[5marks]	
d)	Define	Define the following terms		
	i.	Logic Gates	[2marks]	
	ii.	Digitization	[2marks]	
	iii.	Analog signal	[2marks]	
	iv.	Product of Sum	[2marks]	
e)	Evalua	te the decimal equivalent of $1A53_{16}$	[4marks]	

SECTION B: ANSWER ANY THREE QUESTIONS

Question Two

a) State the second DE Morgan's theorem and represent the proof in a truth table

[5marks]

b) Describe the Duality principle, stating clearly the steps taken in simplification of a function. [5marks]

c)	Using Truth tables show that						
	$\overline{A+B} = \overline{A}.\overline{B}$	[3marks]					

d) Simplify the Boolean Expression $Y = \overline{\overline{A}B\overline{C}} + \overline{A\overline{B}C}$ [3marks]

e) Evaluate the 2's compliment of 1101101_2

Question three

a)	Construct a Truth table for the following function.			
	$Q = AB + \overline{B}C$		[5marks]	
b)) Given the Boolean Expression below,			
		$Y = A(\overline{B} + BC)$		
	i.	Represent the expression in a Logic diagram and truth table.	[6marks]	
	ii.	Use Duality principle to simplify the expression.	[6marks]	
	iii.	Draw the logic diagram for simplified expression.	[3marks]	

Question Four

a) Using relevant examples, discuss Numbering system as used in digital electronics.

			[4 marks]	
	b) Conve	rt the following		
	i.	$5B9C_{16}$ to decimal	[5marks]	
	ii.	35.45 ₁₀ to octal	[5marks]	
c)	Discrete	stem by physical quantities		
	called <i>signals</i> . The most common are the electrical signals such as voltages and currents.			

State the three ways these discrete signals can be represented. [6 marks]

Question five

a) Define a three variable Karnaugh Map and hence use the technique of K-map ,simplify the Boolean Function below

$$F(ABC) = \sum_{m} (0157)$$
 [6marks]

- b) Discuss the advantages and disadvantages of Analog signals. [4 marks]
- c) Simplify the expression $F(A, B, C) = A\overline{B} + B(BC + CB)$ hence draw the logic diagram and truth table. [4 marks]
- d) Use Boolean algebra to minimise the following expressions.
 - i. $Y = (AB\overline{C} + \overline{A}BC + \overline{A}BC + AB\overline{C})$ [3marks]
 - **ii.** $F = (x + y).(x + \bar{y} + \bar{z})$ [3marks]

[4marks]