

GRETSA UNIVERSITY - THIKA

UNIVERSITY EXAMINATIONS MAY - AUGUST 2018 SEMESTER

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: BSCS 100

COURSE TITLE: DISCRETE STRUCTURES I

DATE: 6TH AUGUST 2018

TIME: 8.00AM - 11.00AM

INSTRUCTIONS TO CANDIDATES

- 1. SECTION A IS **COMPULSORY.**
- 2. SECTION B: ANSWER ANY OTHER **THREE** QUESTIONS.
- 3. **<u>DO NOT</u>** WRITE ANYTHING ON THIS QUESTION PAPER AS IT WILL BE AN EXAM IRREGULARITY.
- 4. ALL ROUGH WORK SHOULD BE AT THE BACK OF YOUR ANSWER BOOKLET AND CROSSED OUT.

CAUTION: All exam rooms are under CCTV surveillance during the examination period.

SECTION A: COMPULSORY

Question One

a)	Defi	ne the principle of inclusion and exclusion of three sets	[4 marks]	
b)	Show	w that the following functions are inverses of each other; $f(x) = \frac{x+2}{x-3}$ as	nd	
	g(x)	$0 = \frac{3x+2}{x-1}$	[6 marks]	
c)	Defi	ne and list examples of the following terms		
	i.	Containment of a set	[2 marks]	
	ii.	Proper subset	[2 marks]	
	iii.	Finite set	[2 marks]	
	iv.	Universal set	[2 marks]	
d)	Proc	f using Venn diagrams and set notation.		
	i.	$A - B = A \cap B'$	[5 marks]	
	ii.	$(A \cap B)' = A' \cup B'$	[5 marks]	
e)	Desc	cribe the difference between Polynomial functions and Rational functions	[4 marks]	
f)	State	e whether the following functions are propositions or not		
	i.	Four plus four equals eight	[2 marks]	
	ii.	$(6,4,3) \subset (7,4,8,6,3,4)$	[2 marks]	
	iii.	Do you speak Spanish?	[2 marks]	
	iv.	<i>4-x</i> = <i>8</i>	[2 marks]	
SECTION B: ANSWER ANY THREE QUESTIONS				
Question Two				

a)	Defin	e a Compound Proposition	[3 marks]		
b)	b) Given the functions $f(x = 3x + 2 \text{ and } g(x) = 3x^2 + 4x$				
	Evaluate				
	i.	f(x) + g(x)	[2 marks]		
	ii.	f(x)g(x)	[2 marks]		
	iii.	fog	[3 marks]		
	iv.	f^{-1}	[3 marks]		
c)	Show	that $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a Tautology	[6 marks]		

Question three

a) Consider the following statements;

p:" You take a course in discrete mathematics"

q:"You understand logic"

r: "You get an A on the final exam"

Write as simple English statements as possible using;

i.	$p \rightarrow q$	[2 marks]
ii.	$p \lor q$	[2 marks]
iii.	$(p \land \neg q) \to \neg r$	[3 marks]

iv.
$$\neg (p \lor q)$$
 [3 marks]

[6 marks]

- **b**) Construct a truth table for $\neg p \land (\neg q \rightarrow p)$
- c) State the type of functions shown below

i.
$$f: Z \to Z$$

 $f(x) = x^3$ [2 marks]
ii. $g: \mathfrak{R} \to \mathfrak{R}$

$$g(x) = (3x+1)$$
 [2 marks]

Question Four

a) Define a Logically equivalent statement [2 marks]
 Given the sets below
 5 (1 2 2 - 20)

$$\zeta = \{1, 2, 3, ..., 20\}$$

$$A = \{5, 10, 15, 20\}$$

$$B = \{2, 4, 6, 8, 10, 12, 14, 18, 20\}$$

$$C = \{3, 6, 9, 12, 15, 18\}$$

i. Construct a Venn diagram for the sets and fill in the elements. [12marks]
ii. Solve for $(A \cap B) \cap C$ and $((A \cup B) \cup C)'$ [6marks]

Question five

a)	Shov	that contrapositive and conditional are logically equivalent	[4marks]
b)	Define the sets of numbers citing examples		
	i.	Rational numbers	[1marks]
	ii.	Natural numbers	[1marks]

iii. Real numbers	[1marks]						
iv. Irrational numbers	[1marks]						
v. Imaginary numbers	[1marks]						
b) Given the statement							
P: It rains							
Q: The crops will grow							
Write the down the following in as natural way as possible;							
i. Implication	[1marks]						
ii. Converse, inverse and contrapositive of (i).	[3marks]						
c) Given the set							
$A = \{1, c, f, 3, g, k, t\}$							
$B = \{b, f, k, n, m\}$							
$C = \{a, 3, t, z, x, k\}$							
$\xi = \{1, a, c, 3, f, g, k, t, b, n.m, z, x, p, y\}$							
Find							
i. <i>A</i> ′	[1marks]						
ii. $A' \cup B'$	[2marks]						
iii. $(A \cup B)'$	[2marks]						
iv. $(A \cap B)'$	[2marks]						