
ASSESSMENT OF UNDERSTANDABILITY OF OBJECT ORIENTED

PROGRAMMING AMONG LEARNERS: A CASE STUDY OF GRETSA UNIVERSITY

ALI IBRAHIM ALI

ICT-4-1829-16

A RESEARCH PROJECT SUBMITTED TO THE SCHOOL OF COMPUTING AND

INFORMATICS IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

AWARD OF THE DEGREE IN COMPUTER SCIENCE OF GRETSA UNIVERITY

OCTOBER 2019

ii

Declaration

This research project is my original work and has not been presented for award of a Degree in

Computer Science or for any similar purposes in any other institution.

Signature: _____________________________ Date: _______________________________

Ali Ibrahim Ali

ICT-4-182916

This research has been submitted with my approval as University Supervisor.

Signature: _______________________________ Date: _______________________________

Prof./Dr./Mr./Ms.: __

School of Computing and Informatics

Gretsa University, Thika.

iii

Table of Contents

Declaration... ii

List of Tables .. vi

List of Figures .. vii

Abbreviations and Acronyms .. viii

Operational Definition of Terms .. ix

Abstract ..x

CHAPTER ONE: INTRODUCTION ..1

1.1 Introduction ...1

1.2 Background to the Study..1

1.3 Statement of the Research Problem ..5

1.4 Purpose of the Study ..5

1.5 Conceptual Framework ..5

1.6 Objectives of the Study ..6

1.6.1 General Objective ..6

1.6.2 Specific Objectives ..6

1.7 Research Questions ...6

1.8 Significance of the Study ...6

1.9 Scope of the Study ...7

1.10 Limitations of the Study ..7

CHAPTER TWO: LITERATURE REVIEW...8

2.1 Introduction ..8

2.2 Review of Literature ...8

2.3 Understandability of OOP Concepts Among Students ... 10

iv

2.4 Difficulties Associated with Learning OOP ... 11

2.5 Teaching Models Used in Teaching Programming Languages 12

2.6 Theoretical Framework ... 13

2.7 Summary of Identified Gaps in Literature ... 13

CHAPTER THREE: RESEARCH METHODOLOGY .. 14

3.1 Introduction ... 14

3.2 Research Design .. 14

3.3 Study Area .. 14

3.4 Target Population .. 14

3.5 Sampling Techniques .. 15

3.6 Sample Size ... 15

3.7 Research Instruments ... 16

3.8 Validity of Measurements .. 16

3.9 Data Analysis .. 16

3.10 Logistical and Ethical Considerations .. 16

CHAPTER FOUR: FINDINGS AND DISCUSSIONS .. 17

4.1 Introduction .. 17

4.2 Overview of Findings .. 17

4.3 Discussion of the Findings .. 18

4.3.1 Respondents’ Profile .. 18

4.3.2 Programming Concepts Difficulty .. 22

4.3.3 Lecture Data .. 24

4.3.4 Personal Study Data ... 27

4.4 Critique of Other Studies ... 29

4.5 Inferences of the Study .. 30

v

CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATIONS 31

5.1 Introduction .. 31

5.2 Summary .. 31

5.3 Conclusion .. 32

5.4 Recommendations for Practice .. 32

5.5 Recommendations for Further Research .. 33

REFERNCES .. 34

APPENDICES .. 36

Questionnaire .. 36

vi

List of Tables

Table 1: Questionnaire Return Rate ... 17

Table 2: Gender Distribution of Respondents .. 19

Table 3: Study Level of Respondents .. 19

Table 4: Year of Study of Respondents ... 20

Table 5: Student Dropout Rates ... 21

Table 6: Difficulty in Understanding OOP concepts .. 23

Table 7: Lecture Attendance Frequency .. 25

Table 8: Lecture Experiences In OOP ... 26

Table 9: Study Material Used save for Hard Copy Books .. 27

Table 10: Frequency of Programming Practice .. 29

Table 11: Reasons for not Dropping out .. 29

vii

List of Figures

Figure 1: C ...4

Figure 2: C++ ..4

Figure 3: Java ...4

Figure 4: Visual Basic...4

Figure 5: Conceptual Framework ..5

Figure 6: Instructional System ...9

Figure 7: Reasons for failure in programming ...9

Figure 8: Questionnaire Success Rate .. 17

Figure 9: Course Representation of Respondents ... 20

Figure 10: Performance Representation of Respondents .. 20

Figure 11: Programming Languages Studied by Respondents .. 21

Figure 12: Exclusive OOP Concepts Difficulty ... 24

Figure 13: Reasons for Skipping Lectures ... 25

Figure 14: Completion of Assignments by Students .. 26

Figure 15: Engagement in Programming Study Groups ... 28

Figure 16: Programming Practice .. 28

../../Gichuki%20Mwangi/Documents/Student%20Projects/Research%20Projects/Ali%20Kaska/Ali%20Ibrahim%20Ali%20-%20Research%20Project.docx#_Toc22301171
../../Gichuki%20Mwangi/Documents/Student%20Projects/Research%20Projects/Ali%20Kaska/Ali%20Ibrahim%20Ali%20-%20Research%20Project.docx#_Toc22301172
../../Gichuki%20Mwangi/Documents/Student%20Projects/Research%20Projects/Ali%20Kaska/Ali%20Ibrahim%20Ali%20-%20Research%20Project.docx#_Toc22301173
../../Gichuki%20Mwangi/Documents/Student%20Projects/Research%20Projects/Ali%20Kaska/Ali%20Ibrahim%20Ali%20-%20Research%20Project.docx#_Toc22301174

viii

Abbreviations and Acronyms

C – A high level structured programming language used for computer programming.

C++ – A high level object oriented programming language used for computer programming.

GST – General System Theory

OO – Object Oriented

OOP – Object Oriented Programming

SQL – Server Query Language

ix

Operational Definition of Terms

Attribute – In OOP; a specification that defines a property of an object.

Class – In OOP; a template of blueprint that describes the behavior or states that an object of its

type supports.

Code – In computer programming; a series of symbols written in a predetermined fashion used

to give instruction to a computer.

Function – A method.

High Level – A language that is understandable by a human being but has to be translated to

machine code to be understood by the computer.

Language – In computer programming; a system of conventional written symbols which are

used to give instructions to a computer.

Method – In OOP; a container of program logic, data and all actions related to the program that

is contained within a class.

Object – In OOP; an instance of a class with states and behaviors.

Pascal –An imperative and procedural computer programming language.

Programming – The process of designing and building an executable computer program.

x

Abstract

Computer programming is a vital part of the computer science curriculum. This research

describes an investigation into some of the academic problems the face new programming

students as they learn object oriented programming. Specifically, the researcher looked into the

problems that arise during the study of object oriented programming languages. Object oriented

programming languages have been proven to be more complex to learn as compared to structural

programming languages. The research is focused on two of some of the most popular

programming languages, C++ and Java. These languages were selected because they were taught

at Gretsa University as well as other Universities across the country. The study involved Gretsa

University students who were in the School of Computing and Informatics and pursuing either a

Diploma in Computer Science, Information Technology or Software Engineering or a Degree in

Computer Science. Questionnaires were handed out to a sample selected using purposive

sampling technique. The study found that the students did have difficulty in learning various

areas and also recommended some few actions that could be taken to improve understanding of

new concepts.

1

CHAPTER ONE: INTRODUCTION

1.1 Introduction

The background of the study is helpful in giving a foundation of the concepts of research. This

chapter has handled the research concepts background, elaborated on the problem statement,

given the purpose of the study and discussed the conceptual framework. The chapter has also

covered the general and specific objectives, significance of research, scope of the study, and the

limitations of the study.

1.2 Background to the Study

Programming languages have been known to give students challenges due to the fact that they

are relatively new concepts that had not been covered in their prior years of education. This

situation if further aggravated by the fact that in secondary school level, only mathematics,

languages and sciences are required as the bare minimum for entry in computer science related

courses.

The type of programming languages that have been taught over time may not be the reason why

students have foundthem hard rather, it has been the abstract programming concepts and logical

reasoning processes. The nature of the programming languages themselves has become the

actual hindrance in understanding their concepts. Further, being in group classes has caused the

lack of specified instructions for students based on their understanding levels.

To ease on the learning process, new students have been required to learn structural or

procedural programming languages and their concepts such as C or Pascal in their first year of

study. This method has ensured the once they move on to object oriented programming, they are

familiar with programming concepts. More often than not however, the expected learning curve

2

has not been achieved. This has as a result of having structural programming present challenges

to these students and these challenges being inherited as the students move on to object oriented

programming.

Object Oriented programming is a programming paradigm that is based on the concept of object

that can contain data in the form of attributes or properties and code in the form of methods.

Compared to procedural programming, object oriented programming is much more powerful and

with power, comes complexity. Being a requirement for any computer science related course,

object oriented programming has been an obstacle that all students have had to contend with.

With object oriented programming, students have had to learn the four pillars of this

programming paradigm. These pillars have been identified as encapsulation, abstraction,

inheritance and polymorphism. Further, students have had to learn more library importation and

manipulation procedures, adding difficulty to the new concepts.

Inheritance has been identified as one of the most important concept in OOP. This functionality

has allowed programmers to define a class following the description of another class. The

advantage of this concept has been easing the application maintenance process. In addition, it has

allowed the reuse of code, significantly reducing theimplementation time required to generate an

application. With inheritance, new terminologies crop up including the base class and the derived

class. The base class is the existing class from which code is inherited while the derived class is

the new class that inherits code.

Another aspect that has enabled OOP is polymorphism. This concept occurs when there is a

hierarchy of classes and they are related by inheritance. In other words, it means having many

forms. Further elaborated, this concept has allowed the execution of a different function based on

a call to a member function and the object that invokes the function.

3

The third pillar of OOP is data abstraction, otherwise known as data hiding. This concept has

allowed the provision of only essential data to the outside world whilst hiding the background

details. It relies on the separation and implementation, and this is provided by classes.

The last pillar involves the encapsulation of data. In OOP, programs are consistent of two

fundamental concepts. These concepts have been identified as program statement (code) and

program data. Encapsulation in this sense has allowed the binding of data and the functions that

manipulate this very data. In addition, this concept keeps both the functions and the data free

from outside interference and misuse. This lead to the important concept of data hiding.

These four pillars are not all thesestudents have to understand. They need to understand more

concepts including objects, classes, methods and variables in their various forms. This has made

it quite difficult considering the time allocated for teaching, as well as the conflict in the meaning

of terms from the norm.

Over the duration of their course, students have to learn more than one programming language.

In Gretsa University for instance, a diploma student has to learn C, C++, Visual Basic and SQL.

During their degree level, they have to add more programming languages to their knowledge

base including Java. The hindrance in this learning process has been in the understanding of the

programming language syntax and structure which more often than not is unique for each

programming language. Figures 1, 2, 3 and 4 illustrate this concept using a “Hello World!”

program.

4

#include <iostream>

using namespace std;

int main(){

 cout<<”Hello World!”<<endl;

}

public class Main{

 public static void main(){

 System.out.println(“Hello World!”);

 }

}

Module HelloWorld

 Sub Main()

 System.Console.WriteLine(“Hello

World!”)

 End Sub

End Module

#include <stdio.h>

intmain(){

 printf(“Hello World!”);

}

Figure 1: C Figure 2: C++

Figure 3: Visual Basic Figure 4: Java

5

1.3 Statement of the Research Problem

Programming has been proven to be a challenging to learn and understand. This proof has been

founded on the high dropout out rates of students undertaking programming courses. As a result

of traditional study methods employed for teaching programming, students get stuck at beginner

level programming and lack morale to advance further (Matthew Butler, et. al. 2007).At Gretsa

University, this problem is observed as some of the most failed units that result in supplementary

examinations include OOP courses. Most students prefer to cram examinations which works well

for theory units but not programming units.

1.4 Purpose of the Study

This study sought to assess the understandability of programming languages of students learning

computer science and related courses, and the difficulty they experience during and after studies.

Further, the study looked into mechanisms that could ease learning for students doing

programming languages, especially OOP related languages.

1.5 Conceptual Framework

Figure 5: Conceptual Framework

INDEPENDENT

VARIABLE

Understandability of

Programming Languages

DEPENDENT VARIABLES

- Success in Examination

o Reduced course retakes

- Reduced Student dropout cases

-

- Increase in employability

INTERVINING VARIABLE

Teaching Mechanisms

6

1.6 Objectives of the Study

1.6.1 General Objective

To investigate the level of understandability of programming concepts and the difficulties

associated with learning programming languages.

1.6.2 Specific Objectives

1. To investigate the level of understandability of programming concepts.

2. To investigate the difficulties associated with learning programming languages.

3. To investigate the teaching model used to teach programming languages ate Gretsa

University.

1.7 Research Questions

1. How well do students understand object oriented programming concepts?

2. What difficulties do students face as they learn object oriented programming languages?

3. What teaching model is used to teach students object oriented programming languages?

1.8 Significance of the Study

This study’s significance resides in its ability to illuminate on the aspect of how the experience

of learning programming languages is constituted during the duration of study for students. If

further opens territory of understanding the learning process including the difficulties

encountered and recommends how to tackle them. This study would then allow for future

reference in this study area and help lecturers as well as students come up with the best mode of

teaching and study respectively. In turn, this would reduce the dropout and examination failure

rates observed in the past.

7

1.9 Scope of the Study

This study shall be limited only to the study of students within the School of Computing and

Informatics of Gretsa University, Thika. Gretsa University was selected as a significant scope

due to its availability of students who studied computer science among other courses that taught

programming languages. This meant that the student faced the challenges that the research topic

was based upon. Further, the research was focused on the challenges faced by the students at the

aforementioned location whilst learning computer programming languages, and especially object

oriented programming languages.

1.10 Limitations of the Study

This study was anticipated to meet the challenge of information acquisition due to lack of

willingness to provide information as may be required by the questionnaire, by the respondents.

8

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction

This chapter has covered various publications related to object oriented programming, teaching

models and student behavior. Related quotations and discussions have been organized into

review of literature, themes, theoretical frameworks and then summarized as gaps in literature.

2.2 Review of Literature

The process of learning programming languages is made up of three parties; the student as the

learner, the lecturer as the teacher and the university as the facilitator (PaiviKinnunen, 2009). In

a classroom facilitated by the university, the lecturer would often employ the instructional

process to teach concepts. The instructional process was defined as; a wide concept consisting of

all the important components that take place in classroom instruction as well as the steering

factors defined in the curriculum, comprising of both teacher’s and pupil’s actions in totality, as

applied in institutions of higher learning.

(PaiviKinnunen, 2009) further notes there were two theoretical frameworks that could be used to

tackle the instruction process as a whole however, the most appropriate would be the general

system theory (GST). In their description, elaborated that the GST had the ability to tackle the

process nature of instruction, focusing on the process of teaching. In their illustration, they used a

diagram representing input, an open system and output. In the analogy, the student would be the

open system receiving input (instructions) and then acting on this input to give output (result). To

reinforce the study, they were motivated by the outcome of high dropout rates for students, and

represented the process as shown in figure 6.

9

Figure 6: Instructional System

During the first year of study, the core aims of the units taught has been to provide students with

the fundamentals of problem solving, program design and implementation of the programs

(Matthew Butler et. Al., 2007). Some of the students that are involved in the study process have

no prior knowledge of programming. Since these units are considered introductory, covering

both structured and object oriented programming paradigms, the curriculum spans from low to

high levels of conceptual complexity.

In this regard, challenges arise as the curriculum must balance between low level issues such as

syntax needed for program implementation to high level issues such as object orientation. While

the former allows for the implementation of the program and the latter allows for the efficiency

in program design, both issues are indispensable. In as much as there are semantics

understanding required and is clearly defined, verifiable and introductory, the content covered is

not normally large. That coupled with decision making and loops ideally are easy to understand.

On the other hand, object oriented pillars including encapsulation, abstraction, polymorphism

and inheritance are considered high level issues operating from levels far beyond basic

operations of the application (Matthew Butler et. Al., 2007).

(BusraOzmen et. Al., 2014) studied some of the issues that may cause difficulties in the

programming learning process. After the study, they classified the themes into three; personal

Appropriation

Students

Societal Needs

New Knowledge

High Dropout rate

Professionals

10

problems, class activities problems and programming process problems. These problems have

some factors they played in the overall failure of the students. Figure 7 illustrates their findings.

Figure 7: Reasons for failure in programming

2.3 Understandability of OOP Concepts among Students

For most students starting their programming courses, they reside in the scope of novices or

beginners. These are students who have very little to no knowledge on matters programming. For

a person to be considered an expert, they needed at least ten years of consistent programming.

Common features for students beginning their programming courses included knowledge of only

the surface level of programming. As a result, such students had the tendency to approach

programming line-by-line as opposed to larger program structures (KirstiAla-Mutka, 2007).

In addition to programming line-by-line, students tended to spend very little time in planning and

testing their code. As observed, students ended up making small localized fixes to fix problems

encountered during execution as opposed to thoroughly reformulating the programs. This led to

Reasons for

Failure

Class Activities

Personal

Programming

Process

Prejudice, Inattention, Dislike of

Programming, Anxiety

Many Topics, Non-procedural, Deficit

in Application

Available code, complex algorithms,

error tracing, complexity

11

frustration and failure to progress forward because such fixes would not result in permanent

progress.

As observed, most students did not usually make much progress in their introductory

programming courses. They either did not progress at all or they shifted to a different

programming language to specialize in their future careers after they finished their courses. A

more personalized problem resulted from students believing they had understood an issue whilst

they were still in the process of learning. This resulted in ignorance and overall lack of

understanding by the students.

2.4 Difficulties Associated with Learning OOP

Learning OOP has its own unique difficulties. In addition, it inherits all the difficulties that are

experienced while learning structural programming. To learn a programming language, one has

to understand several concepts during the learning process including syntax, semantics and

program comprehension. With students, program comprehension becomes quite daunting

especially when loop logic and debugging is concerned (Anna Eckerdal, 2009).

Over the years, object oriented programming has been seen as a natural way of conceptualizing

real world problems. This often leads to underestimating the difficulties associated with the

learning process with the teachers assuming its ease for students. In a study performed using

Pascal/C and C++ programs, students were found to have major difficulty in identifying hidden

actions. This made it more difficult for students to comprehend OO programs. As a result, most

students opted for structural programs while solving and debugging errors.

Both the teachers and students considered constructors, virtual functions and function overriding

as major difficulties in the same study.

12

2.5 Teaching Models Used in Teaching Programming Languages

The teaching model used during the learning process has been the core contributor in the overall

success of the students who learn programming languages. Particular attention is necessary in the

initial learning stage as it forms the foundation of the programmer’s success (Gomes Anabela et.

Al., 2007).

(Gomes Anabela et. Al., 2007) highlighted the first two important factors in the learning process

as the teaching method and the study methods used by the lectures and students respectively. In

their study, they diagnosed the problems that arose from the methods used in respect to teaching

and study over the course of their research.

The traditional method of teaching that was widely in use had quite a number of shortcoming.

For theoretical subjects that required only understanding of concepts, the methods were okay but

when it came to programming, they put the students being taught at a disadvantage. The first

issue that arose was the lack of personalization. The availability of personalized teaching would

allow for better supervision, details explanations and immediate feedback. The second problem

was the lack of support for all students’ learning styles. This short-handed the students who

learned slower or were more receptive to practical lessons.

Another problem that arose from use of traditional teaching methods was the teaching of

dynamic concepts through static materials. The static materials included presentations, verbal

explanations, diagrams and text. This led to failure of understanding program dynamics and

consequently failure in understanding programming concepts in question. The last issue (Gomes

Anabela et. Al., 2007) observed was the emphasis on teaching of syntactic details as opposed to

promoting problem solving using said programming languages. This resulted in redundant

abilities and difficulty in understanding of more complex concepts.

13

The second factor in the learning process involved the students’ study methods. The first and

major problem was the use of methodologies borrowed from other disciplines that included

memorization of formulas, procedures, text or diagrams. These methods would not successfully

work on programming since it required regular and active practice. The other shortcoming was

the students’ lack of motivation to study enough to acquire programming competencies. These

two factors added to the overall failure when it came to programming understandability.

2.6 Theoretical Framework

The theoretical approach used by this research is the General System Theory. Dating back to the

1950’s and established by an Austrian Biologist, Ludwig von Bertalanffy, this theory can be

traced back earlier and has been modified over the years.

GST was developed as a holistic way of looking at the foal-directed behavior of complex system,

concerning itself with the functions of a system at an abstract level. This then makes it possible

to apply a system-theoretical approach for making sense of various phenomena across different

disciplines. Though it was originally developed in the field of Biology, GST has been adopted by

other field experts including those in the fields of mathematics and social sciences.

2.7 Summary of Identified Gaps in Literature

Literature had been done on the challenges that involved learning of programming concepts but

such literature was majorly done outside of Kenya. During literature review, the researcher

stumbled on only a few, old studies that had been done directly related to students in Kenya.

Specifically, research lacked on programming difficulties identified within private institutions of

higher learning.

14

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Introduction

This chapter covers the methods that have been used to collect the data relevant to this research.

These methods include the description of the research design, the study area, target population,

sampling technique, sample size, research instruments, data collection and analysis and the

limitations that were encountered.

3.2 Research Design

This study used the exploratory research design. This design would enable the researcher to

collect the views of the correspondents and understand their point of view. It would create a

focal point on empathizing with the students and thereby understanding their concerns with

regard to the study topic. Doing so would allow the researcher to translate their feedback into

analyzable data more effectively and efficiently.

3.3 Study Area

This research was done in Gretsa University, Thika Sub County, Kiambu County, Kenya. This

study area was selected due to the presence of students who were actively involved in the

learning process of object oriented programming. Further, the institution was selected because it

was a private institution which was identified as lacking in literature, and accessibility to the

location was not problematic.

3.4 Target Population

The target population was comprised of a total of 2000 students. Of these students, only about

150 were active programming student. This meant that they had learnt programming or were

15

actively undertaking the course during this research. These students were recognized as a prime

target population because they had knowledge in programming and had experienced the

challenges that come along with programming.

3.5 Sampling Techniques

This research used two sampling techniques. The researcher used purposive sampling technique.

This technique was used to identify the students who were undertaking computer science and

computer science related courses that has object oriented programming as a requirement. This

enabled the researcher to acquire the first group of students from the initial population of 2000

students. Once that was done, the researcher used snowball sampling technique. The technique

enabled the researcher to acquire more students through referrals from the initial students who

had been identified through purposive sampling.

3.6 Sample Size

A sample size has to be properly determined based on the expense of data collection and the

need to have sufficient statistical power. It is important for any study with the goal of making

inferences about a population for a sample. Sample size determination is the act of choosing the

number of observations or replications to include in a statistical sample. The researcher acquired

a significant number of students (112) from the total number of students who were undertaking

computer science and related courses to include in the study. To acquire the study sample size,

the researcher used the formula to find sample size for qualitative studies. The predetermined

type 1 error was at 5% as a majority of studies considered the expected proportion in population

significant below 0.05. Whilst previous studies reviewed in literature reviewshowed that only

about 8% of the respondents viewed research to be extremely difficult. The absolute error

(precision) was set at 5% or 0.05. The calculation was done as show below.

16

Sample Size = Z1-a/2
2P(1-P)

 d2

Sample Size = 1.962 x 0.08(1-0.08) = 112

 0.052

3.7 Research Instruments

Research instruments are measurement tools designed to obtain data on a topic of interest. The

researcher used questionnaires as the research instruments. This would allow the respondents to

answer questions, giving enough data required for the study.

3.8 Validity of Measurements

The researcher could not directly influence the response of the students under survey with regard

to the answers they gave to the questions asked. This meant the answers were valid opinions

from real subjects under study.

3.9 Data Analysis

Once data was collected, the researcher had to process that data info information form the

questionnaires. The researcher grouped questions with similar goals and represented them in

form of graphs and tables for ease in explanation. This then enabled the availability of patterns

that could be used in the other phases of the research.

3.10 Logistical and Ethical Considerations

This research encountered issues with the privacy of data collected, data collections using

questionnaires and assurances of confidentiality to the respondents who were used during the

research exercise.

17

CHAPTER FOUR: FINDINGS AND DISCUSSIONS

4.1 Introduction

This chapter has covered all information related to the data collected using the questionnaire

used for this research. Information has been represented using tables, charts and graphs to

simplify and provide an overview of all data collected. This chapter consists of an overview of

the findings, the discussion of the findings, critique of other studies and inferences of the study.

4.2 Overview of Findings

The study had 112 questionnaires handed out to the students of Gretsa University. Of these

questionnaires, 109 were returned to the researcher representing a 97.3% return rate. Of the

returned questionnaires, only 100 were usable with good data, representing 91.7% of the returned

questionnaires. Overall, the questionnaires used for the study research were 100 out of the 112

handed out representing 89.3% success rate in questionnaire collection. This information is

represented below.

Table 1: Questionnaire Return Rate

Research Action Number Percentage

Questionnaires handed out 112 100%

Questionnaires returned 109 97.3%

Usable questionnaires 100 91.7%

Figure 8: Questionnaire Success Rate

18

The research also found that the lecturers use the traditional teaching model to disseminate

information to the learners. Mostly, the studies were theoretical and the use of hard copy printer

reading material was the major method in which lecturers used to teach. In addition to that, the

researcher also observed that the difficulties the students faced while learning were majorly

centered around the concepts of OOP including Abstraction, Encapsulation, Inheritance and

Polymorphism. This supported the fact that OOP concepts are challenging to learn. Adding to the

difficulties experienced, the respondents also noted the lack of practical studies and low

attendance of lectures which resulted to low grades. The respondents were found to understand

OOP concepts moderately and properly understanding the other concepts of programming

including syntax, semantics and logic.

4.3 Discussion of the Findings

4.3.1 Respondents’ Profile

The total number of respondents for the study was 100 with 73% of the respondents being male,

25% being female and 2% not responding to the questions. Of the total, 30% were students

19

pursuing a bachelor’s degree, 44% were pursuing a Diploma and 26% were in their certificate

level. The study also acquired 30% of respondents as students doing Computer Science as a

course and 70% being students pursuing Information Technology. Of the total respondents, 43%

of the respondents were in their first year of study, 29% were in their second year of study, 27%

were in their third year and 11% were in their fourth year. The first and second years saw the

largest number of students since Certificate students only had roughly one year of study in their

course.

When it came to their performance, the data collected showed that most of the students were

average performers. This was observed with only 11% having attained an A in their grades, 25%

having scored a B, 45% scoring a C, 9% scoring a D and 10% having failed in their current study

level. Further, the study sought to establish the number of drop outs as observed by the

respondents. Of the total respondents, 84% had observed a dropout rate of between 1 and 5 of

their colleagues while 16% had observed a dropout rate of between 6 and 10 students. This data

is represented in the consecutive tables and figures.

Table 2: Gender Distribution of Respondents

Gender Representation

Male 73%

Female 25%

Rather not Say 2%

Table 3: Study Level of Respondents

Study Level Representation

Degree 30%

20

Diploma 44%

Certificate 26%

Figure 9: Course Representation of Respondents

Table 4: Year of Study of Respondents

Year of Study Representation

Year 1 43%

Year 2 29%

Year 3 17%

Year 4 11%

Figure 10: Performance Representation of Respondents

21

Table 5: Student Dropout Rates

Dropout Rage Representation in %

0 0%

1 – 5 84%

6 – 10 16%

Over 10 0%

Figure 11: Programming Languages Studied by Respondents

22

4.3.2 Programming Concepts Difficulty

The main aim of this study was to understand the difficulties that were experienced by students

as they learnt the various OOP concepts. These concepts included the four pillars of OOP which

were; Inheritance, Abstraction, Encapsulation and Polymorphism. Further, the study included

other aspects included in OOP including the syntax, program logic, variables, functions, arrays,

loops and decision making. All these aspects were fundamental parts of all programming

languages including Object Oriented Programming, Event Driven Programming and Structured

programming.

The study collected data from the respondents as follows. On program logic, 84% of all

respondents found it highly difficult to understand, 14% found it moderately difficult, and only

2% found it being easy. Syntax of OOP was found to be simple by 57% of the respondent,

moderately hard by 37% and highly difficult by 4%. With regards to variables, 60% found it to

be easy, 39% moderate and only 1% hard in terms of difficulty. Decision making was found to

23

challenge only 28% of the respondents with 67% and 28% finding it moderately hard and simple

respectively. Loops were found to be hard for 56% of the respondents, moderately difficult to

43% and simple for 1% of the respondents. Arrays were found to be moderately difficult for the

majority of the respondents at 53%, hard to 43% and simple to 3%.

Methods were flagged as hard by only 27% of the respondents, with 69% saying they were

moderately hard and 4% flagging them as simple. The concepts of OOP were found to be

generally hard to understand with 72%, 63%, 51% and 73% finding the polymorphism,

inheritance, abstraction and encapsulation as hard to understand respectively. This information is

represented in the table and figure below.

Table 6: Difficulty in Understanding OOP concepts

Concept Low Difficulty Medium Difficulty Highly Difficulty

Algorithms (Program Logic) 2 14 84

Syntax 57 39 4

Variable 60 39 1

Decision Making 5 67 28

Loops 1 43 56

Arrays 3 52 45

Methods 4 69 27

Polymorphism 1 27 72

Inheritance 9 28 63

Abstraction 13 36 51

Encapsulation 8 19 73

24

Figure 12: Exclusive OOP Concepts Difficulty

4.3.3 Lecture Data

Lectures have been a fundamental part of every course. For any students to pass, or to have been

considered to have studied for a course, they need to have attended these lectures up to a certain

percentage. In addition, lectures are required for the dissemination of information required for

the student to learn. This section looks into data related to lectures.

The research found that a majority of the students who were involved in the study attended

between 60 – 80% of all lectures required for their course. 3% attended above 80% of their

lectures, 67% attended 60 – 80% of their lectures, 19% attended between 40 – 60% of their

lectures, 9% attended 20 – 40% of their lectures and 2% attended between 0 – 20% of their

lectures.

25

On the reasons that students had on their skipping of lectures, sickness ranked top at 53% with

18% sighting lack of interest, 11% sighting time issues, and 18% not specifying the exact reason

for not attending the lectures. A majority of the respondents also felt that lectures did make it

hard to understand concepts in OOP. 87% of the respondents agreed to completing assignments

while 13% did not complete given assignments. On study materials used, most indicated that

theoretical hard copy books were the largest mode of tutoring with practical programming taking

only 32%. This information is summarized in the tables and figures that follow.

Table 7: Lecture Attendance Frequency

Frequency Percentage Representation

80 – 100 % 3%

60 – 80 % 67%

40 – 60% 19%

20 – 40% 9%

0 – 20% 2%

Figure 13: Reasons for Skipping Lectures

26

Table 8: Lecture Experiences in OOP

Experience True False

Lectures Improved understanding of concepts 41% 59%

Lectures made it difficult to understand concepts 37% 63%

Teaching model used disseminated information well enough 29% 71%

Lectures were too theoretical 81% 19%

Lectures lacked engaging study materials 74% 26%

Figure 14: Completion of Assignments by Students

27

Table 9: Study Material Used save for Hard Copy Books

Material Representation

Presentations 12%

Practical Programming 32%

Visual Aids 7%

Videos 1%

4.3.4 Personal Study Data

In addition to lectures, students had to make sure they added to the information they acquired

through personal study. Of the respondents involved, 33% agreed to attending programming

study groups while 67% did not. 76% said they did their own practice in programming while the

rest declared they did not. Of the respondents, 9% said they never did programming practice

weekly or daily, 32% said they did it daily and 59% declared they engaged in the practice at least

once a week. The study also sought to find out why the current group had not dropped out of

28

study. 67% attributed this to passion, 20% were driven by the desire to acquire a job which 4%

and 9% said they were coerced into doing the course and lack of a better course respectively.

Figure 15: Engagement in Programming Study Groups

Figure 16: Programming Practice

29

Table 10: Frequency of Programming Practice

Frequency Representation

Rarely 9%

Weekly 59%

Daily 32%

Table 11: Reasons for not Dropping out

Reason Representation

Passion 67%

Coercion 4%

Job Opportunities 20%

Lack of better course 9%

4.4 Critique of Other Studies

Studies reviewed in the literature of this study supported the findings the researcher gathered.

(Matthew Butler et. Al., 2007) noted in their study that OOP concepts and Arrays represented a

huge problem to the students with an average rating of 5.12 and 4.19 out of 7 respectively. These

findings showed that the highest rated difficulties in the curriculum were conceptual in nature.

Compared to the lowest rank in difficulty, the difficulty in concepts almost doubled it.

(PaiviKinnunen, 2009) noted that the attendance level for lecturers by the students directly

determined the ability of the student to understand the concepts of OOP and consequently pass

the examination. A higher attendance rate meant that there was s likelihood of understanding the

concepts of passing the examinations.

30

(Gomes, et. Al., 2007) noted that the teaching methodologies used for programming languages

were traditional and quite ineffective due to the nature of programming languages. This then lead

to the students not understanding concepts and failure in development in programming. This this

study, the researcher found the methodologies used were traditional and lacked engaging content

and visual aids as well as enough practical exercises.

4.5 Inferences of the Study

The challenges that face students as they learn programming are many and variant on a number

of factors including; teaching methodologies, student interest, attending of lectures, difficulty of

concepts and prior knowledge on subject matters. These very factors led to the ability of the

student to stay in the course without dropping out.

Programming languages that were considered difficult such as OOP were learnt from the second

year of study through the fourth year. This formed a foundation for programming students due to

first learning structured programming and programming logic as well as other related concepts.

With time and understanding, this made it easier for the students to understand concepts in more

advanced languages.

In OOP, the difficult concepts include Inheritance, Encapsulation, Abstraction and

Polymorphism. These concepts coupled with fundamental concepts of all programming

languages including logic, semantics, syntax and decision making and loops made programming

difficult and hard to understand. They made it even more difficult because memorization of

concepts was not feasible. The trend in memorization had been acquired for theoretical courses

and it helped the students pass examinations and consequently succeed in their course work.

31

CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This chapter consists of the summary, conclusions and recommendations with regard to this

research. These are covered in section 5.2 through 5.5.

5.2 Summary

The researcher pursued the research topic with the aim of understanding the challenges the

students faced while learning programming languages, especially object oriented programming

languages that included C++ and Java. This was done through the assessment of

understandability of such programming languages.

The researcher used several mechanisms to gauge understandability and form an overall picture

in the success of students with regards to OOP languages. These mechanisms include the

understanding of concepts, the passing of examination through a look at their grades, the

teaching methodologies used and the likelihood of dropping out of the course.

In the study, the researcher found that there was a need to modify the teaching model that was

used in the teaching of object oriented programming languages. The traditional teaching

methodologies were not found to be efficient. These methodologies focused on the memorization

of theoretical concepts as opposed to understanding them. As a consequence, the students were

not able to comprehensively apply the theoretical knowledge acquired for the purposes of

developing their knowledge in OOP. The study found the use of visual aids, more practical

lessons and other engaging teaching methodologies to be more beneficial to the students as

opposed to traditional teaching methodologies.

32

The fault was not however on the teaching methodologies alone. The study found that there was

a lack of enthusiasm in students acquiring more knowledge on their own through personal study

and study groups related to programming. Personal study and study groups had the advantage of

fostering what was learnt in class and expounding knowledge beyond curriculum coverage.

5.3 Conclusion

This study concluded that the understandability of programming was lacking for a majority of

the respondents who were students. To advance their understanding of concepts, the curriculum

had to implement a two-pronged approach in an effort to improve understandability of

programming concepts. The first would be the improvement in the teaching methodologies to

accommodate requirements for programming languages. The second would be the incitement of

students to adopt self-imposed practices instead of waiting for curriculum imposed practices.

Learning programming has been observed to be inherently difficult, and the reasons for this

difficulty is complex. Programming requires a set of skills, not a single skill to understand. Those

skills form are required by the programmer at any point in time when they work on programming

exercise. The basic idea would be developing a problem solving environment during the learning

process. This would allow students to deal with programming issues as a set of logical problems

requiring unique answers instead of problems requiring memorized solutions.

5.4 Recommendations for Practice

This study recommends a two-pronged change in the curriculum related to learning of

programming languages. The first is in the teaching methodologies. In the teaching

methodologies, the researcher would recommend the use of dynamic material to teach dynamic

concepts. Further, the teaching should be focused more on the logic rather than the norm of

33

syntax teaching. Lastly, the teachers should try to implement the use of personalized teaching

methods that take care of the needs of groups of students with the same understanding capacities.

The second change in curriculum would involve the students. The curriculum should implement

ways in which students should be motivated into furthering their research save for tasks that are

only done in lectures.

5.5 Recommendations for Further Research

Thestudy found that not a lot of researchers have focused in the challenges the students face as

they learn programming in private universities in Kenya. Illuminating this concept could enable

improvement of programming skills and overall productivity in the computers science industry

through the advancement of curriculum. The study therefore recommends further research in

challenges that face students as they learn programming, the level of understanding they have as

they do their studies and teaching methodologies used to teach programming.

34

REFERNCES

Aska P. and Davenport D (2009). An Investigation of Factors Related to Self-Efficacy for Java

Programming among Engineering Students. The Turkish Online Journal on Educational

Technology. (TOJET), 8(1).

Caspersen, M. E. (2007). Educating Novices in the Skills of Programming. (PhD), University of

Aarhus, Denmark.

Bennedsen, J., and Schulte, C. (2008). What Does Object First Mean? – An International Study

of Teacher Perception of Objects First. 7th Baltic Sea Conference on Computing

Education Research. Joensuu.

BusraOzmen and ArifAltun (2014). Undergraduate Students’ Experiences in Programming:

Difficulties and Obstacles. Turkish Online Journal on Qualitative Inquiry. July 2015,

5(3).

David Weintrop and Uri Wilensky (2015). The challenges of Studying Blocks-based

Programming Environments. Learning Sciences and Computer Science. Northwestern

University.

Eckerdal, A. (2009). Novice Programming Students’ Learning of Concepts and Practice.

Uppsala University. IS 1651-6214.

Gomes, Anabela and Mends A. J. (2007).Learning to Program – Difficulties and Solutions.

Engineering Institute of Coimbra – polytechnic Institute of Coimbra.

Hawi, N. (2010). Casual attributions of Success and Failure Made by Undergraduate Students in

an Introductory-Level Computer Programming Course. Computers and Education (54)

2010, 1127-1136.

Jiau, H. C., Chen J. C. and Su K. F. (2009). Enhancing Self-Motivation in Learning

Programming Using Game Based Simulation and Metrics. IEEE Transcations on

Education. 52(4), 555-562.

KirstiAla-Mutka (2007).Problems in Learning and Teaching Programming. Institute of Software

Systems, Tampere University of Technology.

Lau, W. W. F and Yuen, A. H. K. (2011). Modelling Programming Performance: Beyond the

Influence of Learner Characteristics. Computers and Education 55 (2010), 2018-228.

Law K., Lee V. and Yu Y. T. (2010). Learning Motivation in E-Learning Facilitated Computer

Programming Courses. Computers and Education. 55(2010), 218-228.

Matthew Butler and Michael Morgan (2007). Learning Challenges Faced by Novice

Programming Students Studying High Level and Low Level Programming Concepts.

Faculty of Information Technology. Monash University.

PaiviKinnunen (2009). Challenges of Teaching and Studying Programming at a University of

Technology - Viewpoints of Students, Teachers and the University. TKK Research

Reports in Computer Science and Engineering A. TKK-CSE-A4/09 Espoo 2009

35

Sheard. J., Simon Hamilton, M and Lonnberg, J. (2009). Analysis of Research into the Teaching

and Learning and Programming. The Fifth International Workshop on Computing

Education Research Workshop. Berkely, CA, USA.

Thune, M. and Eckerdal, A (2009). Variation Theory Applied to Students’ Conceptions and

Computer Programming. European Journal of Engineering Education.

36

APPENDICES

Questionnaire

I am Ali Ibrahim Ali and I am conduction a research in the difficulties associated with computer

programming, specifically in OOP. The data collected shall be purely for academic purposes and

shall be kept confidential, private. This questionnaire shall take 15 – 20 minutes of your time.

Student Information

1. What is your gender? Male __ Female __ Prefer not to Say __

2. What is your level of study? Degree __ Diploma __ Certificate __

3. What course are you pursuing?

4. In what year of study are you? Year 1 __ Year 2 __ Year 3 __ Year 4 __

5. What is your average score in programming courses? A__ B__ C__ D__ F__

6. What number of students has dropped out of your class? 0__ (1-5)__ (6-10)__ Over 10__

7. What languages have you studies? C __ C++ __ Java __ Visual Basic __ SQL __

8. Which was the most difficult to learn? C __ C++ __ Java __ Visual Basic __ SQL __

9. Of the below outlined OOP concepts, note with either Low, Medium or High; the level of

difficulty you experienced when learning.

Concept Difficulty

Algorithms (Program Logic)

Syntax

Variables

Decision Making

Loops

Arrays

Methods

Polymorphism

Inheritance

Abstraction

Encapsulation

37

10. What is your approximate lecture attendance with regards to programming units? (tick

where appropriate)

Attendance Frequency

80 – 100%

60 – 80%

40 – 60%

20 – 40%

0 – 20%

11. What was the major determinant in skipping a lecture?

__

__

__

__

12. For the lectures you attended, which of the following statements describes your

experience best?

a. Lectures improved my understanding of concepts. True___ False___

b. Lectures made it difficult to understand concepts. True___ False

c. The teaching model used disseminated information well. True___ False___

d. Lectures were too theoretical. True___ False__

e. Lectures lacked engaging study material. True___ False__

13. Do you attend study groups with regards to programming? Yes__ No__

14. Do you finish assigned work by lecturers with regards to programming? Yes__ No__

15. Other than written, hard copy materials; what other materials do you use with regards to

programming study in lectures? __

__

16. Do you do your own programming practice? Yes__ No__

17. If yes, how often? ___

38

18. What reasons have prevented you from dropping out of this programming course?

__

	Declaration
	List of Tables
	List of Figures
	Abbreviations and Acronyms
	Operational Definition of Terms
	Abstract
	CHAPTER ONE: INTRODUCTION
	1.1 Introduction
	1.2 Background to the Study
	1.3 Statement of the Research Problem
	1.4 Purpose of the Study
	1.5 Conceptual Framework
	1.6 Objectives of the Study
	1.6.1 General Objective
	1.6.2 Specific Objectives

	1.7 Research Questions
	1.8 Significance of the Study
	1.9 Scope of the Study
	1.10 Limitations of the Study

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Introduction
	2.2 Review of Literature
	2.3 Understandability of OOP Concepts among Students
	2.4 Difficulties Associated with Learning OOP
	2.5 Teaching Models Used in Teaching Programming Languages
	2.6 Theoretical Framework
	2.7 Summary of Identified Gaps in Literature

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Research Design
	3.3 Study Area
	3.4 Target Population
	3.5 Sampling Techniques
	3.6 Sample Size
	3.7 Research Instruments
	3.8 Validity of Measurements
	3.9 Data Analysis
	3.10 Logistical and Ethical Considerations

	CHAPTER FOUR: FINDINGS AND DISCUSSIONS
	4.1 Introduction
	4.2 Overview of Findings
	4.3 Discussion of the Findings
	4.3.1 Respondents’ Profile
	4.3.2 Programming Concepts Difficulty
	4.3.3 Lecture Data
	4.3.4 Personal Study Data

	4.4 Critique of Other Studies
	4.5 Inferences of the Study

	CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATIONS
	5.1 Introduction
	5.2 Summary
	5.3 Conclusion
	5.4 Recommendations for Practice
	5.5 Recommendations for Further Research

	REFERNCES
	APPENDICES
	Questionnaire

